Effects of Space-Time Curvature on Spin-1/2 Particle Zitterbewegung

نویسندگان

  • Dinesh Singh
  • Nader Mobed
چکیده

Abstract. This paper investigates the properties of spin-1/2 particle Zitterbewegung in the presence of a general curved space-time background described in terms of Fermi normal co-ordinates, where the spatial part is expressed using general curvilinear co-ordinates. Adopting the approach first introduced by Barut and Bracken for Zitterbewegung in the local rest frame of the particle, it is shown that non-trivial gravitational contributions to the relative position and momentum operators appear due to the coupling of Zitterbewegung frequency terms with the Ricci curvature tensor in the Fermi frame, indicating a formal violation of the weak equivalence principle. Explicit expressions for these contributions are shown for the case of quasi-circular orbital motion of a spin-1/2 particle in a Vaidya background. Formal expressions also appear for the time-derivative of the Pauli-Lubanski vector due to space-time curvature effects coupled to the Zitterbewegung frequency. As well, the choice of curvilinear coordinates results in non-inertial contributions in the time evolution of the canonical momentum for the spin-1/2 particle, where Zitterbewegung effects lead to stability considerations for its propagation, based on the Floquet theory of differential equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parity Doubling , Zitterbewegung , and Rest Mass for Spin 1 ∗

A 6-component “wave function” (not field, but S-matrix interpretable) for a massive spin-1 particle parallels the Dirac “chiralitydoubled” 4-component wave function for a spin-1/2 particle, by pairing two wave functions for same spin but opposite “handedness”. The correlated “opposite-parity” pair of complex 3-vectors defines a fluctuating spin-correlated lightlike “internal velocity” as well a...

متن کامل

2 00 1 A Hamiltonian for the description of a non - relativistic spin - 1 / 2 free particle

We propose a Hamiltonian for a nonrelativistic spin 1/2 free particle (e.g. an electron) and find that it contains information of its internal degrees of freedom in the rest coordinate system. We comment on the dynamical symmetry associated with the electron Zitterbewegung.

متن کامل

ua nt - p h / 01 05 02 1 v 1 6 M ay 2 00 1 SPIN - ORBIT PENDULUM IN DIRAC OSCILLATOR ∗

The dynamics of wavepackets in a relativistic Dirac oscillator (DO) is considered. A comparison to nonrelativistic spin-orbit pendulum effect is discussed. Particular relativistic effects, like Zitterbewegung in spin motion, are found in Dirac representation. This trembling motion disappears in Foldy-Wouthuysen representation. A substantial difference between the dynamics of wavepackets corresp...

متن کامل

Zitterbewegung and semiclassical observables for the Dirac equation

In a semiclassical context we investigate the Zitterbewegung of relativistic particles with spin 1/2 moving in external fields. It is shown that the analogue of Zitterbewegung for general observables can be removed to arbitrary order in ~ by projecting to dynamically almost invariant subspaces of the quantum mechanical Hilbert space which are associated with particles and anti-particles. This n...

متن کامل

Dirac equation and quantum relativistic effects in a single trapped ion.

We present a method of simulating the Dirac equation in 3+1 dimensions for a free spin-1/2 particle in a single trapped ion. The Dirac bispinor is represented by four ionic internal states, and position and momentum of the Dirac particle are associated with the respective ionic variables. We show also how to simulate the simplified 1+1 case, requiring the manipulation of only two internal level...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009